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LAGRANGIAN TURBULENCE:

STRUCTURES AND MIXING IN ADMISSIBLE MODEL FLOWS

Principal Investigator: JM. Ottino
Department of Chemical Engineering

University of Massachusetts, Amherst, Massachusetts 01003
May 8, 1987

ABSTRACT:

This report summarizes the main results obtained during the first two years of the grant
AFOSR-87-0385. The general objective of our work during this period was to bridge the gap
between modem ideas from dynamical systems and chaos and more traditional approaches to
turbulence. In order to reach this objective we conducted theoretical and computational work on
two systems: (i) a perturbed Kelvin cat eyes flow, and (ii) prototype solutions of the Navier-
Stokes equations near solid walls. The main results obtained are two-fold: (a) we have been able
to produce flows capable of producing complex distributions of vorticity, and (b) we have been
able to construct flow fields, based on solutions of the Navier-Stokes equations, which are
capable of displaying both Eulerian and Lagrangian turbulence.

INTRODUCTION

Recent developments in chaos theory and dynamical systems hold promise for the
understanding of turbulence; however, the connection is by no means complete and the points
of conflict appear not to have been clearly identified. Chaos admits various mathematical
definitions (unfortunately, not all of them equivalent). In the context or volume or area
preserving systems, chaos can be interpreted as: (i) the flow produces either transverse
homoclinic or transverse heteroclinic intersections, (ii) the flow produces horseshoe maps; these
definitions are amenable to mathematical proof. Oftentimes the definitions are computationally
based; for example, in the context of dissipative systems 'chaos' can be interpreted as a system
that has an attractor with at least one positive Lyapunov exponent, a so-called 'strange attractor'. or
Other diagnostics are somewhat less rigorous; for example, the visual appearance of numerically
computed Poincar6 sections. Alternative definitions, common in experimental studies, are
broadband power spectrum of a signal obtained at a fixed point in the flow or a decaying o

correlation coefficient. A criticism of these diagnostics is that there is no spatial information
regarding the complexity of the flow. Distribu tion/
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By contrast with chaos, turbulence, as understood by most workers in fluid mechanics as

opposed to dynamical systems, is more akin to an illness typified by a number of symptoms

(i.e., a syndrome). A flow is diagnosed to be turbulent if it presents typical symptoms [though

by no means will all researchers agree as to which ones are the 'right symptoms']. Typical

symptoms are: (i) the Eulerian signal of quantities such as velocity and pressure are complicated

(temporal disorder), (ii) the flow has ability to mix, (iii) there is energy transfer from large to

small scales--characterized by spectral laws and regimes, (iv) there is mixing of vorticity (spatial

disorder), (v) there is vorticity intensification until intensification is balanced by the dissipation,
(vi) the flow is characterized by a large Reynolds number1. It is clear that there are chaotic flows

which are not turbulent. As to whether turbulent flows are chaotic the answer depends largely

upon the definition adopted. Chaotic advection clearly mimics (ii). However, every flow based
on perturbing an analytical expression for the streamnfunction (or velocity field) cannot possibly

create a complex pattern of vorticity since at the most the vorticity will as complicated as the
velocity field itself (co=Vxv). Another difficulty is that every flow based on perturbing an

analytical expression for the streamfunction (or velocity field) cannot create Eulerian turbulence

(the velocity at a fixed point is simply given by the steady flow plus the perturbation which is

given a priori). Can these difficulties be overcome? What kinds of things can (and cannot) be

understood in terms of the chaotic advection approach?

ADVECTION OF VORTICITY:

The best studied flows examined in the context of chaotic advection (and the only ones for
which there are reliable experiments) are 2d-time periodic Stokes flows.2-3,4 (i.e., Reynolds--O

and Strouhal--O). In this case, the streamfunction adjusts instantly to time-dependent boundary

conditions, and even though a passive scalar might be mixed chaotically by the flow, V(x,t) is

never truly complex. In particular, the vorticity distribution is not advected by the flow and

satisfies V4V= -V 2 0z=O. The situation is obviously different at finite and large Reynolds
numbers. In 3d and in the limit Re--, the vorticity equation reduces to

Do/Dt = co.Vv, 1 (1)

lsee for example H. Tennekes and J.L. Lumley A First Course in Turbulence. 6th printing, Cambridge:

MIT Press (1980).
2 J.M. Ottino, C.W. Leong, H. Rising and P.D. Swanson, Nature. 333,419 (1988).
3j. Chaiken, R. Chevray, M. Tabor, and Q.M. Tan, Proc. Roy. Soc. London. A408, 165 (1986).
4J.M. Ottino, Scient. Amer., 260, 56 (1989).
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vortex lines move as material lines, and both can be stretched and folded into complex structures

characteristic of chaotic flows. The solution of (1), w=or0.FT, where coo is the initial value of

the vorticity, and F the deformation tensor, indicates the very same same point. This result

might give also the mistaken impression that the evolution of vorticity can be calculated on

purely kinematical grounds. However, this is not true; the deformation tensor F cannot be

calculated until the velocity field is obtained by solving Euler's equation.

All the three-dimensional flows studied to date in the context of chaotic advection are unable to

shed much light into the connection between chaos and vortex stretching. In particular if v is
given, as for example in the ABC flow1,23 , the vorticity is simply given by (0-=Vxv and there

is nothing else left to do. On the other hand, if the flow is based on singularities4 the vorticity is

uniform everywhere (generally zero, except at the vortices themselves) and there is no mixing of

vorticity to speak of even in the case of perturbed flows. However, what happens in perturbed

flows with a distribution of vorticity? (i.e., Vo)#O). We decided to tackle this question in terms

of the Kelvin cat eyes flow which is an exact solution of Euler's equation 5 (for a somewhat

more classical analysis, see6).

KELVIN CAT EYES FLOW

The streamfunction with respect to a fixed laboratory frame (x',y') is of the form

V(x',y',t) = uy' + In [cosh(y') + A cos(x' - ut)] (2)

This flow presents a succession of hyperbolic and elliptic points with connecting heteroclinic

orbits and produces chaos under a time-perturbation vx=esin(ot) [u represents the average speed

of vortices moving from left to right and A is a parameter quantifying the concentration of

vorticity, A=l corresponds to point vortices; in this case the vorticity is zero everywhere except

at the point vortices themselves]. The flow stretches and folds material lines. Computational

studies, e.g., Poincard sections, behavior of manifolds, as well as analytical techniques

1T. Dombre, U. Frisch, J.M. Greene, M. H6non, A. Mehr and AM. Soward. J. Fluid Mech. 167, 353 (1986).
2M.L Feingold, L.P. Kadanoff and 0. Piro, 0. J. SaL Phys. 50, 529 (1988).

3 V.V. Beloshapkin, A.A. Chernikov, M. Ya. Natenzon, B.A. Petrovichev, RZ Sagdeev and G.M. Zaslavsky.

Nature, 337, 133 (1989).
4 e.g., blinking vortex flow, H. Aref, J. Fluid Mech., 143, 1, 1984, oscillating pair of vortices (V. Rom-
Kedar, A. Leonard, and S. Wiggins, J. Fluid. Mech., submitted 1989).

51.T. Stuart, J. Fluid Mech. 29, 417 (1967).
6 G.M. Corcos and F.S. Sherman, J. Fluid Mech., 139, 29 (1984).
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(Melnikov method) show chaotic behavior [we note, in passing, that for a fixed F, the chaotic

behavior is maximized for an intermediate value of the frequency W]. Since the fluid is inviscid

it has to satisfy Euler's equation

Dcoz/Dt = (cor0./t)xy¥ = 0O, (3)

and isovorticity lines have to move as material lines. However, it is relatively easy to show that
the perturbed cat eye flow no longer satisfies the Euler equation, apart from three exceptional
cases: (i) e--O, perturbation strength is zero (no chaos); (ii) A--O, hyperbolic tangent profile (no

saddle connections and therefore no chaos); and (iii) A=l, point vortices, saddle connections
(chaos, but no mixing of vorticity since (o, is identically zero).

One possibility is to regard the parameter A in equation (10 as a new parameter with initial value
A. and to force each particle in the flow to conserve its own vorticity, i.e., (DoD t)o--0. The

most elucidating simulation is to follow the evolution of an iso-vorticity contour (Figure 1). It is

evident that the vorticity is stretched and folded and regions of high vorticity can come in close
contact with regions of different vorticity. By contrast, the flow without the vorticity constraint

distorts material lines but the iso-vorticity lines do not change at all; in fact, the isovorticity
contour is not even affected by the time-perturbation! It does therefore appear that if want to stay
within the confines of chaotic advection we have three choices: (i) ignore Euler's equation (no

mixing of vorticity), (ii) ignore Euler's but advect fluid particles conserving their initial
vorticity, and (iii) somehow bring up Euler's equation into the picture, as advocated here. The
most 'realistic case" is (iii). However, we have found close agreement between methods (ii) and

(iii). This result is important and suggests that as a first approximation it might be possible to

advect vorticity as a purely passive scalar.

FLOWS NEAR WALLS:

To investigate the possibility of generating Eulerian turbulence we have considered flows which

are asymptotically exact solutions of the Navier-Stokes and continuity equations in two and

three dimensions. The starting point is to expand the Eulerian velocity field in a Taylor series
around a point p, i.e.,

v(x) = v(p) + (x-p).Vv(X)1x= p + 1/2 (x-p)(x-p):VVv(X)1x= p + ... (4)
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Each term (l/n!)Vnv(x)l.= P in the expansion represents a tensor of order n+1. Denoting

Aijk...=(1/n!)(nvijaxk ... , the expansion can be written as

vi = Ai + Ai xj + Aij xjxk + Aijkl XjXkXl + Aijklm XjXkXI xm +... (5)

The tensors Aijk... constitute the unknowns and are to be found by forcing the series to satisfy

the continuity and Navier-Stokes equations as well as the boundary conditions of the problem in

question. Substituting the velocity expansion into the continuity and Navier-Stokes equations

and equating coefficients of equal power generates a series of independent relationships between
the coefficients Aij .... The coefficients are then forced to satisfy "boundary conditions", such

non-slip, impenetrability of the wall, and specification of surface vorticity (a way to impose

separation and reattachment points, such as in a separation bubble; see Figure 2(a-c)), etc. We

investigated several types of flows as well as several time dependent pertubations and computed
the time evolution of the coefficients Ax.., which in turn control the Eulerian velocity field. We

have discovered that the evolution equations for the coefficients can display strange attractors

indicating Eulerian turbulence in the velocity field (see Figure 2(d)). To our knowledge, this is

the first example of a flow, in the context of chaotic advection, possessing a strange attractor.
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Figure 1: Tune evolution of an iso-vorticiry contour in the Kelvin cat eye flow.

'1)i. (a)

(a)

(c) Figure 2: Typical behavior of a
separation bubble under a time-
periodic perturbation of the elliptic
point. (a) Poincart section for the
integrable system; (b) Poincar6
section for the perturbed system;
(c) behavior of the unstable
manifold; note the leaking as the
manifold tries to reattach to the
wall. Figure (d) shows the
Eulerian velocity signal at a point
located at a fixed position within
the bubble.
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